Diwali Sales Analysis: A Comprehensive Python Guide for Retail Success

Table of Contents

1. Why Python Dominates Festival Sales Analysis

Python has become the gold standard for Diwali sales analysis due to:

Powerful Data Handling

import pandas as pd
# Load large Diwali datasets
df = pd.read_csv('diwali_sales_10m_records.csv', low_memory=False)

Advanced Visualization

import seaborn as sns
sns.heatmap(df.corr(), annot=True)

2. Preparing Diwali Sales Dataset

Essential data cleaning steps:

Handling Missing Values

# Fill missing values
df['customer_age'] = df['customer_age'].fillna(df['customer_age'].median())
df = df.dropna(subset=['product_category'])

Key Dataset Features

Feature Description Analysis Importance
Purchase Timestamp Exact transaction time Time-series analysis
Product Hierarchy Category > Subcategory > SKU Inventory optimization

3. Advanced EDA Techniques

Sales Trend Analysis

df['purchase_date'] = pd.to_datetime(df['purchase_date'])
daily_sales = df.resample('D', on='purchase_date')['amount'].sum()

Customer Demographics

age_groups = pd.cut(df['customer_age'], 
                    bins=[18,25,35,45,55,65],
                    labels=['18-25','26-35','36-45','46-55','56-65'])

4. Customer Segmentation Analysis

RFM (Recency, Frequency, Monetary) Analysis:

from datetime import datetime
snapshot_date = df['purchase_date'].max() + timedelta(days=1)
df_rfm = df.groupby('customer_id').agg({
    'purchase_date': lambda x: (snapshot_date - x.max()).days,
    'order_id': 'count',
    'amount': 'sum'
})

5. Time-Series Forecasting

Prophet Forecasting Model

from prophet import Prophet
model = Prophet(seasonality_mode='multiplicative')
model.fit(df_prophet)
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)

6. Geographic Analysis

Geographic Sales Distribution During Diwali 2023

7. Machine Learning Applications

Price Optimization Model

from sklearn.ensemble import RandomForestRegressor
X = df[['product_age', 'competitor_price', 'discount%']]
y = df['units_sold']
model = RandomForestRegressor(n_estimators=100)
model.fit(X_train, y_train)

8. Actionable Business Insights

Inventory Planning

Top 5 Products for Next Diwali:

  1. Smart Home Devices (32% growth)
  2. Premium Ethnic Wear (28% growth)

Marketing Strategy

  • Prime Time: 8-11 PM (45% conversions)
  • Top Channels: Mobile App (68% sales)

Transform Your Sales Data into Actionable Strategies

Leverage our data science expertise for your business:

Connect With Us

Explore our website

Data Driven IT